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Why Fortran 907

Motivation

0 Ambitious parallel scientific computations impose new
demands on software development

Approach
0 Study of object-oriented concepts and their application
to scientific computing with Fortran 90
Significance

0 Modernizes scientific programming without sacrificing
performance
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Parallel Computing

Importance

0 Supports solution of very large
problems, leading to better sci-
ence

Issues

0 Requires sophisticated program-
ming to achieve high perfor-
mance

0 Represents the best alternative
to make significant new advances in many fields of sci-

ence and engineering
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The Numerical Tokamak Turbulence Project

Participating Institutions

LLNL, LANL, UCLA, PPPL, NERSC, ORNL, UTA, GA, UColorado

Tokamak Definition

Torodial fusion energy device using magnetic confinement

Physics & Computational Goal

Model transport of particles & energy in
tokamaks

Demonstrate MPP usability

Competing Approaches

Gyrofluid: Enhanced MHD S
Gyrokinetic: Reduced PIC ITER Conftaurasion i9ss
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Plasma PIC Algorithm Particle/Field Interaction in 2-dim

SPMD Data Parallel Model with Explicit Message Passing

Charge Deposition to Charge Density Array
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Object-Oriented Programming Concepts in a Nutshell

CLASSES

[0 Contain user-defined types and the procedures that work on them

USER-DEFINED TYPES

[0 Allow one to combine into a single structure related data which can be
passed together to procedures. Internal details of the structure can be
changed without impacting the clients (users)

INHERITANCE

[0 Allows a family of similar types to share common code. The family has a
special data relationship, where the child adds features to the parent

RUN-TIME POLYMORPHISM

[0 Allows one to write code for a family of types, where the action taken varies
dynamically (at run time) based on the type
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Fortran 90 Features Modernize Programming

Modules Generic Interfaces
Encapsulate data and routines A single call can act differently
across program units. based on the parameters.
Dervied Types Use Association

Allow user-defined types to be cre-  Supports module interaction.

ated.

Array Syntax Pointers/Allocatable Arrays
Simplifies operations on whole Support the use of dynamic data
arrays, or array components. structures.

Fortran 90 is a subset of High Performance Fortran, and
IS backward compatible with Fortran 77
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PIC Example of Fortran 90 Object-Oriented Concepts

Many arguments to describe features (Fortran 77)
dimension part(idimp,npmax), g(nx,ny,nzpmx)
dimension fx(nx,ny,nzpmx),fy(nx,ny,nzpmx),fz(nx,ny,nzpmx)
data gme, dt /-1.,.2/
call push(part,fx,fy,fz,npp,gme,dt,wke,nx,ny,npmax,nzpmx)
call dpost(part,q,npp,noff,gme,nx,ny,npmax,nzpmx)

Combine into logically related units (Fortran 90)
use partition_module; use plasma_module
type (species) :: electrons
type (sfield) :: charge density
type (vfield) :: efield
type (slabs) :: edges
real ;: dt=.2
call plasma_push(electrons, efield, edges, dt)
call plasma_dpost(electrons, charge density, edges)
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Organizing Codes Using Object-Oriented Techniques

0 Relationships among data organize the code, rather
than relationships among procedures

Distribution Class

. . . . number of particles in x, y,z
0  Programming consists of iteratively: rerma vty 3z
spatial density in x, y,z

|:| “Finding” the Ob]eCtS Create Distribution

[J  Understanding and building relationships among objects serves

Species Class

0 Many kinds of relationships can exist...

total # of particles on Proc.

total # of particles in species
charge, charge/mass of species
kinetic energy of species

[0 Links represent connections between classes collection of species particles

Create/Destroy Species

[0 An aggregration is an object assembled from com- |gsibue Speces
ponent objects

[1 Inheritance represents a family of related abstract
data types with similar properties
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Fortran 90 Modules Provide Abstraction Features

MODULE species_class
USE distribution_class; USE slab_partition_class
IMPLICIT NONE
TYPE particle
PRIVATE
real :: X,y,Z,vX,vy,vz
END TYPE patrticle
TYPE species
real :: gm,gbm,ek
integer :: nop,npp
TYPE (particle),dimension(:),pointer::p
END TYPE species
CONTAINS
SUBROUTINE spec_dist(this,edges,distf)
TYPE (species), intent(out) :: this
TYPE (slab), intent(in) :: edges
TYPE (distfcn), intent(in) :: distf

END SUBROUTINE spec_dist
END MODULE species_class
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“Sketch” Of Object-Oriented Fortran 90 PIC Code

PROGRAM beps3k
use partition_class; use plasma_class
type (distf) :: backdf, beamdf
call MP1_INIT(ierror)
call species_init(electrons, gme, gbme, np)
call fields_init(cdensity, nx, ny, nz)
call fields_init(efield, nx, ny, nz)
DO itime = 1,500
call fields_solve(cdensity, efield)
call plasma_getpe(energ, efield)
call plasma_push(electrons, efield, edges, dt)
call plasma_pmove(electrons, edges)
call plasma_dpost(electrons, cdensity, edges)
END DO
call fields_destroy(efield) ; call fields_destroy(cdensity)
call species_destroy(electrons)
call MP1_FINALIZE(ierror)
END PROGRAM beps3k
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Object-Oriented Fortran 90 Parallel PIC Model

MPI Module serves SlabPartitioning Module informs serves Distribution Module
number of processors | ———— | left/right borders number of particles in x, y,z
processor id region size thermal velocity in X, y,z
processor type drift velocity in x, y,z

Uniform Partitioning spatial density in x, y,z
Timer
Initialize )\ Create Distribution
l serves
A A Y
ComplexFields Module VectorFields Module ScalarFields Module Species Module
field energy field energy field energy total # of particles on Proc.
complex field vector field real scalar field total # of particles in species
field geometry field geometry field geometry charge, charge/mass of species
particle halfwidth x, y, z kinetic energy of species
Create/Destroy Field Create/Destroy Field collection of species particles
Create/Destroy Field Read Field Energy Set/Add to Field
Poisson Solve Create/Destroy Species
FFT . . Distribute Species
Transpose Field contained by contained by | set Kinetic Energy
contained by Fields Module
p-| COMplex/transpose charge field

complex/transpose electric field

Create/Destroy Fields
Update Partitioned Field Borders

Solve Fields
OO techniques capture essential
Energy Module Plasma Module abstractions (particles, fields,
pptential energy Advance N I’e|ati0nShipS). Th|S enhanceS
ot onergy” | UpdeDistbuton collaborations and promotes
Total Energy describes 22: gﬂiﬂ%aﬁnggfgy Safer SOftware dESIgn
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lon-Electron expansion from laser-
fusion experiment.

Partitioning from dynamic load bal-
ancing in gravitational problem.




Earth and Space Sciences Project
[ =] (625-20) yHPCC

Ry

“Sketch” Of Object-Oriented C++ PIC Code

void main() {

VPMachine vpm;

DistFunction backdf, beamdf;

Species< Particle3D > electrons;

ScalarField3D< float > cdensity( nx, ny, nz, vpm );

VectorField3D< float > efield( nx, ny, nz, vpm );

Plasma plasma;

Fields3D fields( inx, iny, inz, vpm );

for (inti=0; 1< N_STEPS; i++) {
fields.Solve(cdensity, efield, vpm);
plasma.getpe(efield, energy);
plasma.push(electrons, efield, dt);
plasma.pmove(electrons, vpm);
plasma.dpost(electrons, cdensity);

}
vpm.ParFinal();

} // End Main...
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IBM F77, IBM F90, and KAI C++ Parallel Performance
Comparison on CTC IBM SP2 with MPI

3D Parallel Plasma PIC Experiment
IBHM SP (32 PEs, 8 Million Particles, P25SC Chips)

r | | | | |
1173.51 ﬁ
C++
h 1316.2
A88.88 h
Fa0
627.6
537.95 H
F77
668.03

200 <00 00 s00 1000 1200 1400

Compilers

"

Time {(seconds)

KAl C++ Compilation (Z2hours) IBM F90 Compilation (5 minutes)

Object-Oriented approaches applied to Fortran 90 outperform Fortran 77 and C++ in
this application. (Results in yellow use P2SC Super Chip hardware optimizations.)
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Combine Existing Modules in a more Powerful Way
with a Polymorphic Interface

6riginally, three versions of main cod;

1D Main 2D Main 3D Main
| | |

Now, one polymorphic version
of main code

Main Code
beps12k.f90

Polymorphic Interface
runtime_polymorphism.fo90

1DIlib 2D lib 3D lib

plasma 1d plasma 2d plasma 3d

1D lib 2D lib 3D lib
plasma 1d plasma 2d plasma 3d
\ module module module )

module module module

. J




Earth and Space Sciences Project &
JPL (625-20 Gwrce

Fortran 90 Supports Abstract Data Types

0 Simplifies program interfaces and [rrocram p_amr
hides implementation details USE mpi_module

USE mesh_module
. type (mesh) :: pmesh
0 Helps build codes from modular | . createomesh e

pieces written by different authors call partition(pmesh)

call refinement(pmesh)
call migration(pmesh)
call visualize(pmesh)

Increases program safety END PROGRAM p_amr

Enhances software collaboration

Older codes are safer and easier to use
Allows code changes without impacting users

Encapsulates old codes, advancing them to new standards

0 O o 0o o oo

Program can be expressed in a more natural way
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Complex Data Structures Are Now Possible

0 Makes more realistic, complex, & dynamic simulations
more routine (AMR, Multigrid, Plasma Modeling, ...)

Multigrid Numerical Solvers

Beam-Plasma Instability Experiment

Level O

/

Adaptive Mesh Refinement Level 1 |/
\/ /
Level 2
Z
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PYRAMID: Parallel Unstructured Adaptive Mesh Refinement ‘i@

PTR&AMIDND

Modern... Simple... Efficient... Scalable...

B R LB

An advanced software library suppotting parallel
adaptive mesh refinetmentin large-scals, adaptive
scigntific & engineering simulaticons.

Y R S W T Rl

= Efficient chject-oriented design in Forran 90 and kP
= Aubsimakic mesh quality confrol & dynamic load balancing
= Scalablete hundreds of processors & millicons of elemesnts
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High Performance Computing Systems and Applications Graup = Systemapplied o a variely of meshes
hitt pottwrwrue-hpe jplonasa. g o &P P SEaRP = Publicationsand presentations

20 Adaplive Befinement on Waveguide Filter

John Z. Lou, Charles D. Horton, & Thomas A. Cwik )

Chatky Horen 3-32110)
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Data Structures and AMR Relationships

Fortran 90 Structures (NASA JPL)

OO Approach : Use OO aspects of Fortran 90 to
organize mesh structure

module mesh_module
use mpi_module ; use heapsort_module ; private
public :: jpl_mesh_repartition, ...
type mesh
type(node), dimension(:), pointer :: nodes
type(edge), dimension(:), pointer :: edges
type(element), dimension(:), pointer :: elements
type(b_element), dimension(:), pointer :: bndy elements
end type mesh
contains

end module mesh_module
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Data Structures and AMR Relationships

Fortran 90 Structures (NASA JPL)

Using Abstractions:  Initialization Section

program pamr
use mesh_module
implicit none

type(mesh) :: in_mesh, parent_mesh

call MP1_INIT(ierror)

call jpl_mesh_create_incore(in_mesh, in_file)
call jpl_mesh_repartition(in_mesh)

call jpl_mesh_visualize(in_mesh, “visfile.plt”)
call MP1_FINALIZE(ierror)
end program pamr
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Data Structures and AMR Relationships

Fortran 90 Structures (NASA JPL)

Using Abstractions:  Loop Section

program pamr

doi =1, refine_level
call jpl_mesh_error_est(in_mesh, parent_mesh)
call jpl_mesh_logical amr(in_mesh)
call jpl_mesh_repartition(in_mesh)
call jpl_mesh_physical amr(in_mesh)
end do
end program pamr

[0 Error estimation is not part of the library.
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Are Fortran 90 Compilers Buggy? (Some Yes, Some MNo)

7
~ . The FUJITSU compiler, The IBM compiler, and The Absoft (Linux) compiler

e
. | \_
,...A...P.kt s Object-Criented style programs in Fortran 30 are new and different. They exercise the compilers in new and
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We would be happy to work with the vendors so that they may ALL get the award.

Results of 13 Object- Onented Fortran Benchmarks
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Some Features Approved for Fortran 2000

Firm Requirements (developed by J3)

0 Derived Type I/O, Procedure Pointers, Internationaliza-
tion, Interoperability with C,...

0 OO Features: Inheritance, Polymorphism, Parameter-
ized Derived Types, Constructors/Destructors

Minor Technical Enhancements (optional, time permitting)

0 Increased Statement Length, Intent for Pointer Argu-
ments, Command Line Arguments and Variables, Vola-
tile Attribute,...

Minor Technical Enhancements (lowest priority)
0 Public and Private derived type components,...
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Conclusions

Fortran 90 is useful for complex, scientific parallel programming
0 Safer and faster development than C++

0 Inheritance/Polymorphism is not supported, but can be
emulated (included in Fortran 2000)

0 Performance is equalvalent, or exceeds, Fortran 77/C++

0 Separation of inheritance and polymorphism is impor-
tant when codes have similar interfaces, but algorithms
are not related

0 Inheritance, rarely used, typically appeared in the non-
scientific code sections
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The World of Fortran 90
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Visits and downloads from the Object-Oriented Fortran 90 web site
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	USE distribution_class; USE slab_partition_class
	IMPLICIT NONE
	TYPE particle ! derived type...
	PRIVATE
	real :: x,y,z,vx,vy,vz
	END TYPE particle
	TYPE species ! derived type...
	real :: qm,qbm,ek
	integer :: nop,npp
	TYPE (particle),dimension(:),pointer::p
	END TYPE species
	CONTAINS
	SUBROUTINE spec_dist(this,edges,distf) ! member fcn...
	TYPE (species), intent(out) :: this ! the object...
	TYPE (slab), intent(in) :: edges
	TYPE (distfcn), intent(in) :: distf
	! code omitted...
	END SUBROUTINE spec_dist ! additional member functions...
	END MODULE species_class
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	USER-DEFINED TYPES
	Allow one to combine into a single structure related data which can be passed together to procedu...

	INHERITANCE
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	RUN-TIME POLYMORPHISM
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	Conclusions
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	PROGRAM beps3k
	use partition_class; use plasma_class
	type (distf) :: backdf, beamdf ! declare all objects...
	call MPI_INIT(ierror)
	call species_init(electrons, qme, qbme, np) ! initialize
	call fields_init(cdensity, nx, ny, nz) ! objects...
	call fields_init(efield, nx, ny, nz)
	DO itime = 1,500
	call fields_solve(cdensity, efield)
	call plasma_getpe(energ, efield)
	call plasma_push(electrons, efield, edges, dt)
	call plasma_pmove(electrons, edges)
	call plasma_dpost(electrons, cdensity, edges)
	END DO
	call fields_destroy(efield) ; call fields_destroy(cdensity)
	call species_destroy(electrons) ! destroy dynamic objects
	call MPI_FINALIZE(ierror)
	END PROGRAM beps3k
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	void main() {
	VPMachine vpm; ! declare and init objects...
	DistFunction backdf, beamdf;
	Species< Particle3D > electrons;
	ScalarField3D< float > cdensity( nx, ny, nz, vpm );
	VectorField3D< float > efield( nx, ny, nz, vpm );
	Plasma plasma;
	Fields3D fields( inx, iny, inz, vpm );
	for ( int i=0; i < N_STEPS; i++ ) {
	fields.Solve(cdensity, efield, vpm);
	plasma.getpe(efield, energy);
	plasma.push(electrons, efield, dt);
	plasma.pmove(electrons, vpm);
	plasma.dpost(electrons, cdensity);
	}
	vpm.ParFinal();
	} // End Main...
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	Supports solution of very large problems, leading to better science
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